
Three Visual Approaches to Aid the Teaching of Recursion

Project Proposal

Moegamat Ra-eez Stenekamp

 Computer Science

 University of Cape Town

South Africa

 stnmoe001@myuct.ac.za

Heng Jia (Tony) Guo

 Computer Science

University of Cape Town

South Africa

 gxxhen001@myuct.ac.za

Shakeel Mohamed

 Computer Science

University of Cape Town

South Africa

 mhmsha056@myuct.ac.za

1 PROJECT DESCRIPTION

Recursion is one of the most important programming concepts in

computer science. It can enable the creation of very simple

algorithmic solutions to certain problems that would otherwise be

unsolvable or inefficient with any other type of approach. It is a

fundamental concept in computer science, whether understood as a

mathematical concept or programming technique [1]. It is,

however, regarded as a challenging topic to learn for students being

introduced into the world of computer science [7]. Educators often

find it a difficult topic to teach as well [2]. Many students fail to

grasp the concept as it is taught in lectures and textbooks. Students

may find it difficult to cope with more advanced topics taught later

in their CS courses if they have not fully understood recursion as

the concept can be applied to many other areas [7].

 The lack of student understanding of recursion can be

attributed to the current conceptual models of recursion taught,

being hard to transfer into mental models for the students [6,8]. A

dynamic medium is needed to bridge this gap between conceptual

and mental models. Games can be used as a medium that achieves

this due to their visual and interactive aspects [5].

 This project will explore three different game-inspired

approaches to teaching recursion. These are intended to be used in

the form of assignments that are given to the students. These

approaches will make use of various elements from games,

particularly simulation, visualization and animation. This is

designed to replace or supplement a standard coding assignment

approach.

2 PROBLEM STATEMENT

2.1 Aims

This project will focus on the evaluation of the user experiences of

three different game-inspired approaches used to teach recursion.

The approaches that will be evaluated are: visual coding, visual

simulation; and stack visualization. With this evaluation, key

characteristics of the different game-style approaches to teach

recursion will be identified.

 This project will provide an alternative form of

environment as opposed to the typical text-only environment

students are used to. These alternative environments will be

individually evaluated in order to determine the user experience.

The environments are designed to help students better visualize and

understand the concept of recursion in an ongoing and interactive

way, while still retaining the technical, real-life aspects of

programming.

2.2 Research Questions

1. What is the user experience of the visual coding approach

used to teach recursion?

2. What is the user experience of the visual simulation approach

used to teach recursion?

3. What is the user experience of the stack visualization

approach used to teach recursion?

User experience is evaluated instead of learning since learning

takes a long period of time to evaluate and there are a large number

of confounding factors, such as prior experience.

3 PROCEDURES AND METHODS

The development of the three educational software tools will be for

desktop use only in the form of a browser application. This project

encapsulates the development of three different game-based

software tools that include the following three approaches to

teaching recursion: visual based, visual simulation and stack

visualization.

 There will be two different input forms: text based (they

will be given scaffolding code as a base on which their solution can

be built) and visual based (a drag and drop interface). There will be

two output forms: visualization of the stack, and visualization of

the execution of the code. The visualization of the stack and the

visualization of the execution of the code will make use of both text

and visual based input (see Figure 1). The programming language

in which the user will be required to code in for the textual coding

approach is Python. However, this will be a subset of python which

will be the interface among modules.

mailto:email@email.com

Figure 1: Work Allocation

The user experience for each of these approaches will be assessed

to identify the key user experience characteristics of each of these

approaches. Each of these approaches will have their user

experience tested using similar recursive problems. We will make

use of IJsselteijn et al.’s game experience questionnaire as the main

assessment instrument in evaluating the user experience for each of

the three approaches [13]. We aim to evaluate using a sample size

of 20 first year students, as they would have just started learning

the topic.

 The sections below will examine the procedures and

methods that will be used to answer the research questions outlined

in Section 2.

3.1 Visual Coding

This involves a visual interface the student must use to construct an

algorithm that will solve a recursive problem, such as guiding a

character through a maze or path. The interface will be a ‘drag and

drop’’ type with movement command blocks that can be placed in

a main ‘program block’, which will then be executed upon user

compiling the code. This approach is more visual in nature and

requires little to no syntax knowledge. It provides a more game like

experience relative to the others due to the interactive nature of

visual coding. Thus, this can be more appealing to students. More

emphasis is placed on recursive thinking rather than written syntax.

 An evaluation will be conducted on whether this visual

approach is effective in helping students have a better experience

in learning how recursion can be used to solve problems when

syntax does not need to be considered. The users’ experience with

a drag and drop coding user interface will be taken into account.

3.2 Visual Simulation

When code is run, a visualization of their coded solution to the

problem will be displayed. This will be in the form of a character

performing tasks relating to the execution of the code within a

maze-like puzzle environment, similar to that of Program your

robot [10]. This method is a good way of learning as it allows for

the students to try solving a problem using recursion as well as

seeing the effects of their code on the problem. The end visual

simulation acts as an incentive and will motivate students to solve

the recursive problem. We hypothesize that this will help students

understand recursion as they can see the results due to their own

implementation of recursion.

 The evaluation of the user experience will note how well

they understood the visualization of their solution and whether they

felt it was an accurate representation of their solution.

3.3 Stack Visualization

The call stack keeps track of function calls. It is the list of all the

functions currently running at any given point in the program. Any

time a call stack hits a return, it pops the current function off the

stack and goes back to whichever function is now on top. This

information, during the execution of a recursive program, can be

found in most IDE’s, however it can be difficult to conceptualize

without it’s visual representation.

 This approach demonstrates how the call stack grows and

shrinks as a recursive program runs. In doing so, this gives the

student a clearer understanding of what is happening ‘behind the

scenes’ of their recursive code. The user will complete a given

segment of code and, once compiled, a visualization will appear to

demonstrate their programs’ call stack.

 This will help students to understand the recursive flow

of control, which is essential in understanding recursion. The

recursive flow of control consists of two parts: the active and

passive flow. The active flow is how each recursive call will lead

into the next recursive call until it hits its base case. The passive

flow is the backpropagation of these calls that returns a final

answer.

 The evaluation of the user experience with stack

visualization will include checking whether users found it helpful

in their understanding of recursion and the recursive flow of control

through the visualization of the stack.

4 ETHICAL, PROFESSIONAL AND LEGAL

ISSUES

Ethical issues are identified in the testing and the actual software

we develop. Prior to testing with users, ethical clearance will have

to be obtained from the UCT Human Research Ethics Committee.

This is done by submitting an ethical admittance form to the

committee. Our final products and report will belong to the

developers. No personal information will be collected from users

testing our software and their permission to use their feedback will

have to be obtained. This research will not be conducted in the

classroom; hence it will have no negative effects on the student’s

learning as it will not replace any material taught in the curriculum.

The intellectual property of the project will belong to Shakeel

Mohamed, Moegamat Ra-eez Stenekamp, Tony Guo and the

University of Cape Town. The research paper of the project will be

free and open for distribution and future research.

5 RELATED WORK

There have been several different approaches to attempt to gamify

and visualize the concept of recursion. This section will take a look

at different works that have utilized these different approaches.

5.1 Visual Coding Games

Tessler, Beth, and Lin rewrote the game Cargo-Bot to teach

recursion to students by making students teach a robot how to move

crates [3]. This mobile game uses movement blocks instead of code

to design the program that manoeuvers the cargo crates. In addition

to being addictive and fun, it motivates the students to explore the

game and its mechanics. However, this game does not provide a

fully conceptual model of recursion. Figure 2 displays one’s ability

to play the simulation representing the active flow. On the other

hand, the passive flow of the recursion is not visibly shown and

cannot be traced with the game. Hence, the concept of recursive

calls popping from the stack cannot be easily grasped.

Figure 2: Gameplay in Cargo-Bot [3]

In Dann et al.’s paper [9], a 3D animation world builder was used

to create visualizations for the recursive solutions of problems. The

game depicts Alice doing repeated actions that get closer and closer

to completing a task. Some of these tasks were Rabbit and Butterfly

Chase (having a rabbit chase a butterfly) and completing the

Towers of Hanoi illustrated in Figures 3 and 4. This approach

received a high level of student involvement and the ability to

develop an intuitive understanding of recursion through visual

feedback. However, it was questioned whether this approach taught

recursion fully as the passive flow of recursion was not shown in

the animations. The animations only showed the active flow,

similar to that of the process of iteration, missing the passive flow

that encapsulates the full recursive flow of control.

Figure 3: Rabbit and Butterfly Chase [9]

Figure 4: Towers of Hanoi [9]

Kazimoglu et al. developed the game Program your robot [10]. It

is a serious game designed to help students learn introductory

programming constructs by enabling them to practice working

within an environment that explicitly supports the acquisition of

Computer Thinking skills (such as algorithm building, debugging,

and simulation).

 The game uses drag and drop mechanics to form an

algorithm that is simulated by a robot in a block-like environment.

The level is passed if the commands in the algorithm make the robot

do the required objectives. Figure 5 shows the pleasing visuals and

achievements in the game that keep students engaged and

motivated. Through the ease and power of creating an algorithm by

dragging and dropping commands, students can enhance their

problem-solving skills and gain an intuition for programming.

Figure 5: Level 6 in Program your robot [10]

5.2 Visual Simulation Games

Chaffin et al. present the game EleMental: The Recurrence [4]. This

game focuses on writing code and allows programmers to interact

with the game through a depth-first search of a binary tree to come

up with the solution to the coding question. Figure 6 introduces a

game world where there are many things to learn and explore that

immerses the students in a deep approach to learning. A visual

representation of their solution is also played. Results from students

showed that the visualization of recursion was the favorite aspect

whereas the gameplay was the least favorite aspect. This game only

taught a specific case of recursion using depth-first search; a wider

range of cases are needed to fully encapsulate the concept.

Figure 6: Level 2 AI walkthrough [4]

5.3 Stack Visualization Games

Elenbogen and O’Kennon use Turbo Prolog, a programming

language, to demonstrate recursion graphically using fractals [11].

Due to Prolog’s development environment, it makes the recursive

flow of control transparent and easy to follow. With the use of

fractals as the resultant figures of programs, it is particularly easy

to analyze the fractals with their recursive nature. Mayer and

Gallini conclude that an illustration is most valuable when the

illustration explains the concept and when the student lacks

previous experience [18]. The use of fractals can expose the learner

to a new experience of recursion. By making use of a stack in place

of fractals, the visualization of the recursive flow of control can be

enhanced, aiding students in their understanding of the concept.

Leroux et al. had an interesting take on stack visualization and

introduced the visualization tool Jacot [12]. This tool creates two

different visualizations for the execution of concurrent Java

programs. These visualizations assist the user in understanding

concurrency concepts such as synchronization, non-determinism

and deadlock. Figure 7 shows these visualizations. Although these

visualizations are not that abstracted and do not include much

imagery, they still assisted the user in understanding new concepts.

Figure 7: One visualization view of a concurrency program [12]

6 ANTICIPATED OUTCOMES

This section will examine the anticipated outcomes of each of the

three approaches.

6.1 Visual Coding

The features of the visual coding environment will include a GUI

with selectable program ‘blocks’, which perform different

functions in order to move a character around a 3D environment

(such as a maze or path). These blocks will have movement

functions such as up, down, left, right and rotate. These blocks can

be dragged and dropped into a main program. Once a series of

movement command blocks have been created, which should be

the solution to the maze/path and have been built and compiled, a

visual execution of the character ‘acting out’ the program will be

displayed.

 The interactive elements of this approach allows for the

easy, intuitive formation of solutions without needing technical

knowledge of any particular programming language. If the solution

is incorrect, the visualization will still attempt to run so the student

can see the outcome and understand where they went wrong.

6.2 Visual Simulation

Upon the completion of their solution, a visualization of the

execution of the input will be displayed even if their solution is

incorrect. This system is expected to help students visualize the

effects and flow of their recursive solution. The input form will

need to be accurate and accept varying solutions. It will also need

to determine minor syntax errors in the text input case.

6.3 Stack Visualization

A visualization of the call stack of the users’ solution will be

displayed. The visual will show how the call stack grows and

shrinks during the execution of their solution as well as how values

are passed between them. This outcome is to give the user a good

understanding of how the stack operates. The visualization should

accurately represent how the user coded their solution even if there

are logic errors just as a regular IDE would.

7 PROJECT PLAN

7.1 Required Resources

All three game approaches will be developed in Unity. For the

textual IDE, we will require an open source text editor that is

implemented alongside the visual environment developed in Unity.

Additionally, standard assets provided by the Unity store will be

utilized. Unity’s Web player will be used to create a browser

application version for the tools.

7.2 Timeline

Week 1 (12 May – 19 May)

Finish Proposal

Week 2 (21 May – 28 May)

Finish Proposal Presentation

Holidays (10 June – 16 June)

Technology Frameworks Feasibility and Gather Knowledge

(Understand)

Week 3-6 (8 July – 2 August)

Prototype 3 approaches

➢ 8 July - 13 July

Iteration 1: Initial Prototype

➢ 15 July - 20 July

Iteration 2: Intermediate Prototype

➢ 21 July - 26 July

Iteration 3: Final Prototype

➢ 27 July - 2 August

Iteration 4: Final Touches

Week 7-8 (3 August – 14 August)

Evaluate User Experience

Week 9 (17 August – 23 August)

Final Paper

7.3 Deliverables and Milestones

Date Description

Project Proposal Due 20/05

Project Presentation 27/05-29/05

Initial Software Feasibility Demo 15/07-19/07

Final Complete Draft of Paper 16/08

Project Paper Final Submission 26/08

Project Code Final Submission 2/09

Final Project Demonstration 2/09-16/09

Poster Due 23/09

Web Page 30/09

Reflection Paper 7/10

Open Afternoon/Evening 15/10

7.4 Work Allocation

Shakeel

Mohamed

Responsible for the development of the

stack visualization.

Moegamet Ra-eez

Stenekamp

Responsible for the development of the

visual coding approach.

Heng Jia (Tony)

Guo

Responsible for the development of the

visual simulation.

7.5 Risk Matrix

See Appendix A.

8 REFERENCES

1. McCracken, D.D. Ruminations on Computer Science Curricula.

Communications of the ACM. 30, 1: (January 1987), 3-5.

2. Eagle, M., & Barnes, T. (2009). Experimental evaluation of an educational

game for improved learning in introductory computing. ACM SIGCSE

Bulletin, 2009, 321-325.

3. Tessler, J., Beth, B., & Lin, C. (2013). Using cargo-bot to provide

contextualized learning of recursion. Proceedings of the Ninth Annual

International ACM Conference on International Computing Education

Research - ICER ’13. doi:10.1145/2493394.2493411

4. Chaffin, A., Doran, K., Hicks, D., & Barnes, T. (2009). Experimental

evaluation of teaching recursion in a video game. Proceedings of the 2009

ACM SIGGRAPH Symposium on Video Games - Sandbox ’09.

doi:10.1145/1581073.1581086

5. Kirchgessner, M., & Ketelhut, D. J. (2012). Video games and learning:

Teaching and participatory culture in the digital age. Science Education, 96(5),

963–965. doi:10.1002/sce.21020

6. Stasko, J., Badre, A., & Lewis, C. (1993). Do algorithm animations assist

learning? Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems - CHI ’93. doi:10.1145/169059.169078

7. Milne, I., & Rowe, G. (2002). Education and Information Technologies, 7(1),

55–66. doi:10.1023/a:1015362608943

8. Wu, C.-C., Dale, N. B., & Bethel, L. J. (1998). Conceptual models and

cognitive learning styles in teaching recursion. Proceedings of the Twenty-

Ninth SIGCSE Technical Symposium on Computer Science Education -

SIGCSE ’98. doi:10.1145/273133.274315

9. Dann, W., Cooper, S., & Pausch, R. (2001). Using visualization to teach

novices recursion. ACM SIGCSE Bulletin, 33(3), 109–112.

doi:10.1145/507758.377507

10. Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2012). A Serious

Game for Developing Computational Thinking and Learning Introductory

Computer Programming. Procedia - Social and Behavioral Sciences, 47, 1991–

1999. doi:10.1016/j.sbspro.2012.06.938

11. Elenbogen, B. S., & O’Kennon, M. R. (1988). Teaching recursion using

fractals in Prolog. Proceedings of the Nineteenth SIGCSE Technical

Symposium on Computer Science Education - SIGCSE ’88.

doi:10.1145/52964.53029

12. Leroux, H., Réquilé-Romanczuk, A., & Mingins, C. (2003, June). JACOT: a

tool to dynamically visualise the execution of concurrent Java programs. In

Proceedings of the 2nd international conference on Principles and practice of

programming in Java (pp. 201-206). Computer Science Press, Inc..

13. IJsselsteijn, W. A., De Kort, Y. A. W., & Poels, K. (2013). The game

experience questionnaire. Eindhoven: Technische Universiteit Eindhoven.

Appendix A

 Risk

Description

Consequence Probability

(1-10)

Impact

(1-10)

Factor Mitigation Strategies

1 Bugs that don't

appear at run

time.

This may affect the users

experience using the system,

which could negatively affect

the results of their evaluation.

4 6 24 Thorough testing must be conducted before

releasing the system to be evaluated. This

will find any bugs and allow us to fix them

before any user can encounter them.

2 Development of

a system takes

longer than

planned.

This may result in the system

not being ready in time to be

evaluated, resulting in that

system not being able to

produce results for this

project.

6 8 48 Plan extra time in addition to the estimated

time to complete the system. This will

ensure that if there are any delays then

there will be sufficient time to still

complete the system.

If there is still not enough time, then the

core functions of the system will have to be

identified and focused on completing in the

remaining team, leaving out any non-

essential functions and features.

3 Scheduled

deadlines not

met.

An incomplete, low quality

system will be created.

3 7 21 Realistic and attainable goals and

deliverables must be set not too far apart.

This will allow for a Gantt chart to be

created which, when used alongside the

deliverables, will ensure that the creation

of the system does not fall behind schedule.

Frequent scheduled meetings will help

ensure that the system is following the

planned schedule.

4 Gold plating a

system (adding

too many out of

scope and

unnecessary

features)

This may slow down

development time and may

take away from the core

functions of the system that

the user will need to help their

understanding of recursion.

2 3 6 Review scope frequently to ensure that the

system is within scope and to correct when

development begins to stray from the

scope.

5 If group

members fall

behind on their

specific portion

of work.

This will result in the work

not being complete and thus

the different approaches

won’t be ready in time to

have their user experiences

tested.

3 8 24 Regular group meetings to discuss

progress. Members help each other and

distribute workload evenly.

6 Technologies

chosen to use

are not adequate

to develop the

systems.

Technology too

difficult to use.

A new technology will have

to be chosen. This would

result in a lot of wasted time

and could put the project

behind schedule.

3 9 27 Thorough research done before choosing

technology to use for developing the

systems. Ensuring the technology supports

the system to be built

